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Abstract

A simple smoothing algorithm is proposed for general block-structured meshes. The basic method converts a multi-dimensional
problem of mesh-smoothing to a set of one-dimensional problems of length-measurement (or similar geometrical operations). The
method is robust, easy to implement, and provides nearly uniform spacingbetween mesh surfaces. Variations with special features
to the basic algorithm are also briefly described. A successive-over-relaxation (SOR) operation can be applied to some of the
variations and achieve a convergence rate several times higher than traditional methods.
c© 2016 The Authors. Published by Elsevier Ltd.
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Nomenclature

• stencil spatial entity carrying geometry of elements that share a given node
• basic-stencil logically one-dimensional stencil in physical space
• equal-space-point spatial point that has equal space to theboundary of stencil
• mid-point equal-space-point on basic-stencil
• mid-line basic-stencil defined by equal-space-points (as improved mesh-line)

1. Introduction

Mesh smoothing algorithms have been utilized for many yearssuccessfully in the generation of meshes for struc-
tural mechanics applications. They have proven reasonablyeffective for mesh sizes involving as many as hundreds
of thousands of elements in three dimensions, although theyare somewhat costly. In certain fluid mechanics appli-
cations, however, we routinely face meshes on the order of one hundred million elements, with a billion elements
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on the horizon. These meshes are typically generated with direct node location algorithms, but it would be highly
advantageous to have smoothing algorithms that work acrossthe entire mesh domain to provide a globally optimized
grid. Thus, we seek an algorithm that is relatively inexpensive to run on up to one billion elements or more and has
convergence improved over existing iterative mesh smoothers.

One of the most popular smoothing methods for blocked structured meshes is equi-potential relaxation. It can be
derived from a variational principle based on the theory of differential geometry ([2], [6]). An equi-potential method
has the advantages of producing smooth meshes, robustly with no mesh-folding, and is easy to code. However, there
are issues associated with the original equi-potential relaxation method ([1]) such as slow convergence, grid attraction
with curvilinear meshes, and poor mesh quality near a concave boundary that may cause numerical problems for a
simulation.

Efforts to modify the original equi-potential method have beenmade, and certain improvements are achieved such
as grid attraction prevention, however with the side effect of slowing down the convergence ([7], [9]). A penalty
function can be applied on a concave boundary to improve meshquality with an equi-potential method but usually is
not robust ([6]). It is fair to say the equi-potential mesh-relaxation, while being very successful (particularly witha
Cartesian mesh), still has unresolved issues.

Another effective mesh smoothing method is angle-based ([3]) employedin the the original INGRID ([4]) mesh-
generation package. This is simple to code and works for an unstructured mesh as well. It shares many nice features
with an equi-potential method when applied to a block-structured mesh. However, it also has issues such as shrinking
mesh-size near a reduced connectivity point (and expandingmesh-size with an enhanced connectivity point).

The element-metric based methods with MESQUITE ([5]) generally provides a good mesh-quality for a unstruc-
tured mesh. However it does not utilize the regular topologyof a block-structured mesh and could have a slow
convergence with a global optimization for a mesh of a great many elements.

In this paper a new smoothing approach is proposed for a block-structured mesh. The idea is to evenly space mesh-
lines/surfaces ([11], [12]). With the proposed method, the coordinate of an updated node is not a direct combination
of nodal coordinates as with an equi-potential method. Instead, for updating a given node aequal-space-pointis
computed with a given geometrical rule in a stencil consisting of the elements directly linked to the node.

An equal-space-pointkeeps an even spacing from opposite walls of a stencil in all (logical) directions, thus to
ensure the mesh surfaces are separated with an equal space ineach direction. Various ways to estimate theequal-
space-pointare investigated in this paper. The most basic one employs only measurement of arc-length on a mesh-line
and shall be explained in detail throughout the text. Other choices are briefly described before the numerical examples
are shown.

In general, a uniform mesh size provides better numerical accuracy for simulations. The new method is aimed at
improving the mesh quality near concave boundaries and irregular connectivity points by evenly spacing the mesh
surfaces globally. Similar to the equi-potential relaxation and the angle-based method, the equal-space relaxation
produces smooth mesh-lines, and is robust with no mesh folding. In addition, the proposed method also naturally
prevents grid attraction effects, and produces good mesh quality on a concave boundary orat an irregular connectivity
point.

Furthermore, the proposed method allows point redistribution to be separately done on each mesh-line. A sweep
can be performed in a single logical direction at a time, thussimplifying the coding effort.

In situations where convergence speed becomes important, aone-dimensional SOR (successive over relaxation)
operation can be applied on the arc-length of a mesh-line, and to achieve a convergence rate an order of magnitude
better than the equi-potential method.

In this article, we explain how the proposed mesh improvement method works with a unified operation on a triplet
of nodes on a mesh line, for a block-structured mesh, in one-dimension, two-dimensions, and three-dimensions. The
reader will find a multi-dimensional problem of mesh improvement can be converted to a length measurement on
logically one-dimensional stencils with the proposed basic method. This is a feature that other mesh improvement
methods probably do not share.

We first introduce the idea of ’equal-space-point’ and a logically one-dimensional ’basic-stencil’. Then we ex-
plain how a two-dimensional equal-space point is computed with a logically two-dimensional stencil based on the
(logically) one-dimensional equal-space points on the walls of the 2D stencil with figures. We then describe how to
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Fig. 1. A triplet of ordered points (P,Q,R) defines a basic-stencil.PQ, andQRare straight-line-segments. A basic-stencil can be thoughtof as a
triplet of nodes on a multi-dimensional mesh-line. PointM evenly divides the length (PQ + QR) so is called aequal-space-point(or amid-point).

compute a three-dimensional equal-space point with a logically 3D stencil based on the (logically) two-dimensional
equal-space-points on the walls of the three-dimensional stencil.

Next we describe how to implement the basic algorithm as a one-dimensional-sweep method. The treatment of
irregular connectivity in 2D and 3D follows. After that we discuss the behavior of the basic method on a concave
boundary and a treatment for possible unsmoothness caused by a unsmooth fixed boundary mesh. Following that,
some other variations of algorithms to compute an equal-space point are briefly described in addition to the proposed
basic equal-length-dividing algorithm.

Numerical examples are then provided to support the conclusion.

2. Mesh improvement with equal-space-points

Poor mesh quality usually occurs where mesh-lines/surfaces are not evenly spaced. With a block-structured mesh,
it is trivial to equally space the mesh-lines in the logical space. However, it is not so easy to map the node position
from logical space to physical space. Even when such a map canbe performed, it does not necessarily provide even
spacing of mesh-lines/surfaces in the physical space because the Jacobian of the mapping can vary.

The proposed method is aimed at evenly spacing surfaces directly in the physical space for a specified region. For
this purpose, anequal-distance-pointis computed for some stencil associated with a node and the mesh surfaces are
updated with theequal-distance-pointsby a geometrical rule.

2.1. A basic-stencil and its equal-space-point (mid-point)

A triplet of points linked by twostraight-line-segmentsas points (P, Q, R) shown in fig. 1 is defined as abasic-
stencil. The proposed method is based on a geometrical operation that locates anequal-space-pointon a basic-stencil
on a mesh-line.

A natural way to select an equal-space-point is to choose thepoint that equally divides the total length|PQ|+ |QR|.
In most of this paper we use the above equal-length-dividingpoint, and often call such an equal-space-point a ’mid-
point’.

Updating a point directly to the equal-distance point on a basic-stencil is a one-dimensional mesh smoothing
algorithm. It would distribute points on a spatial curve with an equal arc-length between neighbors when converged.

2.2. A 2D regular stencil and its equal-space-point

In fig. 2, a two-dimensional regular stencil in the physical space is shown with the left figure. We are going to move
the node ’0’ at center to a better position for mesh improvement. Counting from left to right, there are three ’vertical’
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Fig. 2. The left figure shows a regular stencil about node 0 at center, the green points are mid-points on ’vertical’ basic stencils; the blue points
are mid-points on ’horizontal’ basic stencils. Each tripletof mid-points defines a mid-line. The geometrical average of themid-points of the pair
of mid-lines defines a two-dimensional equal-space-point. Inthis drawing the two final mid-points happen to meet at the intersection of the two
mid-lines.

basic-stencils defined by the node triplets (1, 8, 7), (2, 0, 6), and (3, 4, 5). Likewise there are three ’horizontal’
basic-stencils defined by the node triplets (1, 2, 3), (8, 0, 4), and (7, 6, 5), counting from bottom up.

We observe in the right figure of fig. 2 the triplet of green points defines its own mid-point, and the triplet of blue
points defines its own mid-point as well. We call the basic-stencil defined by the blue (or green) points’mid-lines’
for convenience. A mid-line can be thought as locally improved position of a mesh-line. By taking the geometrical
average of the mid-points on this pair of mid-lines, we have asimple choice of a 2D equal-space-point.

Then, computing a two-dimensional equal-space-point becomes a task of dealing with mid-lines. This simplicity is
true in three-dimensions as well. The extension for computing a 2D (logically) equal-space-point in three-dimensions
is straightforward. The only difference is that the points are three-dimensional.

2.3. A 3D regular stencil and its equal-space-point

A regular 3D stencil would own 27 basic-stencils, andnine2D (logically) stencils in space. In each logical direc-
tion, there are three 2D stencils. Each of them owns a spatial2D equal-space-point. This triplet of 2D equal-space-
points forms a mid-line in the corresponding logical direction and is associated with a mid-point. The geometrical
average of the three mid-points (each in a logical direction) defines a three-dimensional equal-space-point.

Again, for computing a three-dimensional equal-space-point, the only operation is finding mid-points on basic-
stencils (logically 1D) and taking a geometrical average atthe end.

We have taken the geometrical average of mid-point on mid-lines for computing an equal-space-point. One how-
ever could define an alternative 3D equal-space-point with intersecting spatial polygons defined by mid-points.

3. Converting a spatial problem to one-dimension

The proposed method depends solely on a geometrical operation that computes an’equal-space-point’(or ’mid-
point’). The mid-points can be computed separately before hand. Fig. 3 shows a three-dimensional node. The given
node is associated with three mid-points, each one on a mesh-line crossing the node.

With a one-dimensional mesh, each interior node corresponds to a single mid-point. The updated position of the
node is this mid-point itself.

In two dimensions, each interior node carries two one-dimensional mid-points.
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Fig. 3. In three-dimensions, theyellow node at the center has three mesh-lines passing through it. The blue nodes are the pair of neighbors on
the i−mesh-line,greennodes are the pair of neighbors on thej−mesh-line, and the pair ofred nodes are the neighbors on thek−mesh-line. There
are three one-dimensionalbasic stencilsassociated with the yellow node at center. Therefore, threemid-points can be defined, each in a logical
direction.

A given 2D regular stencil carries two sets of basic-stencils, each in a logical direction. Each set of basic-stencils
with their three mid-points define a mid-line thus a final mid-point, see fig. 2. A 2D equal-space-point is simply the
geometrical average of the two final mid-points (or alternately the intersection of the two mid-lines).

In three dimensions, each interior node carries three one-dimensional mid-points as already mentioned above.
A given 3D regular stencil carriesthreesets of 2D (logically) stencils. Each set consists ofthreestencils regarding

a logical direction and defines three 2D equal-distance points. Therefore, a triplet of mid-points exists that defines
a mid-line in a given logical direction. All together, thereare threemid-lines, each in a logical direction. A 3D
equal-space-point is taken as the geometrical average of the mid-points of the mid-lines.

Therefore, in a given iteration of the proposed method, the approach to update a node depends on mid-points on
logically one-dimensional stencils only. In other words, the proposed method converts a multi-dimensional mesh
improvement problem to one-dimension.

3.1. A directional sweeping scheme

As shown above, eachk−dimensional regular node is associated withk ’mid-points’, one from each logical direc-
tion. Clearly, by employing a one-dimensional algorithm toredistribute points in the arc-length of a mesh-line, the
proposed algorithm can be implemented in a fashion of one-dimensional sweeping thus simplifying the coding for
better efficiency.

3.2. At an irregular connectivity

A node at an irregular connectivity (for example, a reduced connectivity point) is not associated with a regular
stencil, and needs to be dealt with differently. However, the concept of mid-points can still be used, and the treatment
is even simpler. We demonstrate the treatment with a reducedconnectivity. The treatment is similar for an enhanced
connectivity.

At a reduced connectivity point in two-dimensions, we take the geometrical center of the triangle formed by
the neighbor nodes directly connected to the given node by mesh-lines. Another choice is taking the center of the
inscribed-circle of the above triangle. The latter seems togive a even wider mesh-size.

In three dimensions, two configurations are possible. In thefirst case, a node is at the joint offour hexahedron
elements. We take thegeometrical center, or the center of theinscribed-sphereof the tetrahedron formed by the
neighbor nodes directly linked to the given node by mesh-lines. In the second case, a given node is shared by three
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Fig. 4. Left figure shows a stencil for a node at a reduced-connectivity point of the second type. In the right figure, nodeC is at a spatial, logically
2D reduced connectivity on a patch consist of three faces.d,e, f are neighbor nodes ofC connected with mesh-lines on the patch (dash-lines).
The geometrical center oftriangle def, C′, is the equal-space-point (marked by a dash-circle) for the patch in middle . Likewise the other two
dash-circles mark equal-space-points defined on the other two patches.M is the mid-point on the mid-line (coloredpink) defined by these three
points.

Fig. 5. In the left figure, an equi-potential method can move theyellow node to the position of the red node close to element boundary and reduces
the space between neighbor nodes. In the right figure, the proposed method moves a misplaced node to a location with equal space to element
boundary.

elements on one-side and three on the other side (fig. 4, left). There arethreenodes (including the given node) at
logically 2D reduced connectivity, each on a patch of three spatial faces (fig. 4). This triplet are on a mesh-line that
passes and logically orthogonal to the triple-face patches. Each triple-face patch determines a logically 2D reduced-
connectivity point. These three points form a mid-line, andwe take its mid-point to update the center node.

A mesh-line defined by a set of nodes with a second kind of reduced-connectivity (as shown in fig. 4) will meet
either a first kind of reduced-connectivity point, or the boundary. A reduced-connectivity point is always on boundary
or at the joining lines between blocks.

3.3. Near a concave boundary

A conventional mesh-improvement method usually has an issue with the elements close to a concave boundary.
Elements tend to squeeze together and lay on the concave portion of a boundary. This behavior introduces thin
elements.

The proposed equal-space method with the choice of equal-length-dividing mid-point or equal-distance points
behaves differently. For example, an equi-potential method often movesa node originally at an ideal position to a
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location near a concave boundary (fig. 5, left). The proposedmethod does the opposite by computing an updated
point which has nearly equal space (or distance) between a pair of opposite boundaries (fig. 5, right), thus producing
elements of more equal sizes.

3.4. A treatment for face-smoothness

The equal-length-dividing works well in 3D in general, However, if one of the spatial 2D stencils that define a wall
of a 3D regular stencil has fixed nodes that form sharp-angleson a mesh-line, this unsmoothness can be carried inward
and this is not desired.

To ensure smoothness, we project each 2D equal-space-pointobtained on a spatial logically 2D stencil to a fitting
plane defined by the nodes of the 2D stencil in order to flatten the stencil. As the result, the smoothness of interior
mesh-lines are improved. One needs to apply this operation only to the near boundary mesh. However, we perform it
with all the interior nodes. The mesh sizes near a reduced-connectivity point would be reduced by a little compared
to the case of no face-smoothing, but still quite acceptable, and the overall mesh smoothness is improved.

4. Other choices for computing an ’equal-space’ point

First of all, the solution by averaging the mid-points on mid-lines in each logical direction can be replaced by
intersecting mid-lines (as locally improved mesh lines) in2D, and intersecting spatial polygons (as locally improved
mesh-surfaces) defined by mid-points in 3D. Although the implementation is not as easy, using intersections seems to
converge faster consistently.

Not only that, the way to select a mid-point is also flexible. In our numerical practices, the following variations
have been evaluated.

4.1. Mid-face line-intersection

With this option, one picks the face center points of a regular 2D stencil, in total 12 of them (fig. 6, left). They form
4 mid-lines, 2 in each logical direction. Then in each direction there is a pair of mid-points that define a line-segment.
The equal-space point is the intersection of these two line-segments. In the case that they do not intersect, one picks
the concave corner of a quadrilateral formed by the four mid-points.

Our 2D examples of fast convergence in the next section is performed with this choice, utilizing the successive-
over-relaxation (SOR) scheme.

4.2. The equal-distance point

This algorithm seeks in a regular stencil (2D or 3D) anequal-distance-pointthat has equal-distances to a pair of
opposite boundaries in each logical direction (fig. 6, right). In locating the equal-distance point, a system of nonlinear
equations needs to be solved (we use a Newton’s method for theroot-finding).

In the three-dimensional implementation of locating an equal-distance-point, we use a quadratic Bernstein shape
function to interpolate each wall of a regular stencil for computing the distance. For nodes near a reduced connectivity
point, we break each element face into 4-triangles.

This choice with equal-distance-point can diverge if a stencil is badly distorted initially. However, it gives probably
the most satisfying spacing between mesh-surfaces among our choices, and its solution is very smooth. Employing
the equal-distance-points can help to refine a mesh that has no badly twisted stencils.

4.3. A variable dividing ratio

We have taken a ratio of 1/2 to divide a given length. If required (for example in the case of a stencil with fixed
points that are not evenly spaced) this ratio can be adjustedlocally.
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Fig. 6. The left figure shows the choice of mid-face line-intersection. The 12 center-points of faces form 4 mid-lines, witha pair in each direction
that define a line-segment. The intersection of the two line-segments gives the equal-space-pointM. In the right figure, a pointM exists with the
same distanceg to linked-line-segments (1,8,7) and (3,4,5), and the same distanceh to linked-line-segments (7,6,5) and (1,2,3). We callM the
equal-distance-point defined by the given stencil. It is boundary determined, has no dependence on the position of node 0,and serves as the updated
position of the center node 0.

It is evident that the proposed equal-space method (with whatever algorithmic choices described above) define
an ideal local distribution of nodes in the case that the mesh-lines are (locally) flat in each logical direction. This
statement is also true with an orthogonal curve-linear mesh.

5. Numerical examples

5.1. A case of fast convergence with successive-over-relaxation (SOR)

In the case that the desirable point distribution on a mesh-line is an equal length between neighbor points, a
successive-over-relaxation (SOR) method can give a super-linear convergence rate. A SOR method does not update
a point directly at the equal-length dividing point betweenthe two neighbors. Rather, it over-relaxes the given point
with a factorω between 0 and 2, such that

ℓi+1
n = (1− ω)ℓin +

ω

2
(ℓin−1 + ℓ

i
n+1). (1)

Whereℓ is the length measurement,n is the index of a node on a given mesh-line, andi is the count of iterations
We take a two dimensional mesh with zigzag mesh-lines similar to the Kershaw mesh [7], [9], [10]. The mesh

is smoothed by the original equi-potential method, also by mid-face line-intersection method described in the last
section. The two-dimensional equal-space-point is computed with intersecting the two line-segments defined by a
pair of mid-points computed with an SOR factor of 1.995 in mid-face-lines in each direction. This equal-space-point
immediately updates the node location with a natural doubleloop over all interior points (boundary points are fixed,
outer-loop is withi and the inner-loop withj). The boundary of the mesh is convex in this case, which allows the
operation of intersection to perform well.

In this case the proposed method converges over an order of magnitude faster (fig. 7) than the original equi-potential
method in early iterations andf our times faster in later iterations (fig. 8). TheL2 errors mentioned in the description of
figures is defined as the square-root of the average of physical distance squared between a node and its ideal position.

5.2. With a polar geometry

Fig. 9 shows how the proposed mesh-improvement method workswith an orthogonal curve-linear mesh. The
equal-space nature of the proposed method ensures an ideal spacing of mesh-lines.
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Fig. 7. A mesh with zigzag mesh-lines is shown on the upper-left. It is smoothed by a Winslow-Crowley method to the one on upper-right after 250
iterations (with aL2 error of 0.092681), to the lower-left one with 500 iterations (with aL2 error of 0.023690). An even better mesh-quality can be
obtained with the mid-face line-intersection method using a SOR factor of 1.995 by only 67 iterations (lower-right, with aL2 error of 0.023288).

Fig. 8. TheL2 error vs. iteration numbers for the above example. The vertical axis is the power index log10(errL2).

5.3. With a concave boundary (and an enhanced connectivity point)

An example with an enhanced connectivity and a concave boundary is shown next. We take a perfectly symmetric
’star’ mesh offive blocks with an enhanced connectivity at center. The intersection between thex−axis and the
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Fig. 9. An initially randomly twisted polar mesh is smoothed by the mid-face line-intersection method with 12 iterations. A successive-over-
relaxation is applied with a SOR factor of 1.995.

boundary of the star are at (-10, 0) and (20, 0), with the center at the origin. Each interior node of this mesh is
perturbed with a random displacement between−2 and 2 in both directions. As the result, a big portion of the elements
are folded. We perform smoothing with both the Winlow-Crowley algorithm and the equal-length-dividing (the basic)
algorithm. At the enhanced connectivity point, we simply take the geometrical average of its direct neighbor nodes
linked by mesh-lines. This example demonstrates the robustness of the basic algorithm of equal-space-smoothing,
and its ability to maintain uniform mesh spacing near a concave boundary and/or an irregular connectivity point over
the original equi-potential method. The equal-distance method behaves similarly.

Results similar to the above are obtained for a curved surface mesh as well. For such a mesh, the smoothing
operation is done in a surface fitting plane above a given nodeusing orthogonal projections of the nodes in a 2D
surface stencil. The updated position of the given node is projected back to the surface. The scheme is a planar 2D
local smoothing operation, combined with two projection operations from and back to a curved surface.

5.4. A three-dimensional example

A three-dimensional comparison of the element-size effect near a reduced-connectivity with an angle-based method
and the proposed equal-space method is performed. The geometry of a meshed region is ahalf-sphereof a nondimen-
sionalized radius 9, with the upper quarter mesh fixed and thelower quarter mesh to relax.

Figure. 11 show the initially meshed half-sphere improved by three methods: the angle-based algorithm ([3]); the
proposed equal-space method with equal-length-dividing mid-points; and with the choice of equal-distance points,
each with 100 iterations. The 3D meshes are sliced by a plane defined with a point at (1, 1, 1) and a normal (6/7, 3/7,
2/7).

One can clearly see the angle-based method gives small mesh-sizes around a reduced-connectivity point. However,
an equal-space method gives much more uniform mesh sizes throughout with smooth mesh-lines. The option of
equal-length-dividing is simple, robust. The equal-distance option provides the largest mesh-size around a reduced-
connectivity point. However, this option cannot be directly applied to a very twisted mesh because of possible non-
convergence. It can be combined with a more robust smoothingalgorithm (say, equal-space) for a more uniform
mesh-size.

5.5. Mesh quality measurements

In figs. 12 we plotted the statistical distribution of element sizes with the angle-based-smoothing, the equal-space-
smoothing (the proposed basic algorithm), and the equal-distance smoothing (by solving nonlinear equations about
physical distances from a node to walls of a stencil) for the smoothing problem above. The element shapes all look
normal with each algorithm, thus the mesh-size measurementbecomes a proper indicator of mesh quality. The mesh-
sizes in the figures correspond to a measure (defined as element volume divided by largest element face area) for
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Fig. 10. The figure on upper-left shows the ideal star-mesh. The mesh on upper-right is perturbed (boundary nodes are fixed).The mesh on
lower-left is obtained with the original equi-potential method. The mesh on lower-right is smoothed with the equal-length-dividing (the basic)
method. 500 iterations are taken with each method to ensure convergence.

explicit time-steps (determined by the smallest mesh-sizes). By observing the smallest element-size, one finds the
equal-space method provides a time-step at least twice as big as the angle-based method does. Even better, the equal-
distance method gives a time-step at least three times as big(as visually shown near the reduced-connectivity point
in figs. 11). In addition, the range of mesh-sizes with the angle-based method is reduced with the new methods, with
the narrowest range obtained by finding the equal-distance points. The accuracy of a simulation is expected to be
improved correspondingly.

5.6. The cost of an equal-space method

In a single iteration, an equal-space method with square-root computation for lengths costs a little more than an
equi-potential method. Nevertheless, the mesh quality near irregular connectivity points and concave boundaries is
improved. Moreover, with a SOR scheme, one can expect the cost to be reduced significantly with certain choice of
the proposed method.
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Fig. 11. Above figures show the meshed half-sphere described above sliced by a plane defined by point (1,1,1) and a normal vector (6/7,3/7,2/7).
The upper-left is the initial 3D mesh (before slicing); upper-right for an angle-based smoothing method; lower-left for the proposed equal-space
method with the option of equal-length-dividing with a face-smoothing, and lower-right with the option of multi-dimensional equal-distance point.

6. Conclusion

We believe with a given smoothing algorithm, the solution ofa mesh problem is boundary determined. A good
mesh-smoothing algorithm should take an arbitrary initialconfiguration and quickly converge to the solution. We
presented in this paper a simple equal-space mesh-smoothing method for a general block-structured mesh, with several
algorithmic options. By using the equal-space mid-points,a multi-dimensional mesh-smoothing problem is converted
to finding a set of mid-points, each on a logically one-dimensional stencil defined by a triplet of points on a mesh-line.
A directional line-sweeping scheme can be applied to simplifying the coding and reduce computing cost.

The major benefit of the proposed method is that a nearly uniform mesh spacing can be achieved, especially near
an irregular connectivity or a concave boundary. Not only that, with a successive-over-relaxation scheme the proposed
method may achieve a much higher convergence rate compared to traditional smoothing methods in certain cases.

The proposed method has not only the usual positive featuressuch as smooth mesh-lines, no mesh-folding, no
mesh contraction with a curve-linear mesh, it also producesa mesh quality better than some conventional algorithms
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Fig. 12. Distribution of element sizes with different smoothing algorithms. The horizontal axis is the size ofelements and with a uniform range.
The vertical axis is the count of elements in each bin (ranges are not uniform). The left figure is for the angle-based method, the figure in middle
for the basic equal-space method, and the right figure for the equal-distance method.

near a concave boundary/ irregular-connectivity. The proposed method costs a little more than a conventional method
in a single iteration but this draw-back is overwhelmed by a faster convergence. Furthermore, the simplicity of the
proposed basic method with finding the equal-length-dividing points on mesh-lines makes it robust.

The concept of the equal-space-point may be extended to an unstructured mesh. There also can be various possible
definitions of an equal-space-point. The proposed equal-space algorithm utilizes the topological regularity of a block-
structured mesh and gives natural definition of an equal-space point. Because of its simplicity and robustness, we
conclude the proposed equal-space algorithm (as well as theequal-distance algorithm) has the potential to become an
effective numerical tool for improvement of general block-structured meshes.
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